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A Brief History of Fields

Before Faraday: E&M, gravitational v
Fields=a math convenience

Faraday: Fields contain energy

Maxwell: Light comprised of
oscillating E&M fields

Einstein: Fields an independent
entity w/o medium

Alter the space they subtend
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A Brief History of Mass

Newton: (1687) and his mechanics, Lavoiser (1760)
— Mass is an inherent essential property of an object

— It is conserved, neither created or destroyed
After Einstein, DeBroglie and Quantum Mechanics

— Both light and building-blocks of matter (quarks and
leptons) are quantized oscillating massless fields.

Yukawa: (1935) Particles interact by exchanging other force
mediating particles

— vy for E&M
— W,Z bosons for Weak force

— Gluon for strong force=QCD

— Graviton(?) for gravity
Feynman taught us how to do the calcula
easily, pictorially
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One More Thing: Some 3™ year QM

* If you start with SE:
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3" Year QM, Cont.

* By requiring local U(1) gauge invariance we arrive
at S.E. for Electrodynamics...very suggestive...

* Mills and Yang (1954):

“Perhaps the dynamics of all field
theories can be derived from local

gauge invariance”
 The answer appears to be:

Yes

Oct 15, 2012 Lessons from the Higgs 7



The Essence of the Standard Model

(SM) of Particle Physics
Gauge group of SM:

Gives properties of Strong

Three Generations
of Matter (Fermions)

SU(3).x SU(2),x U(1),
Weak EM forces

In detail!
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One Last Big Problem

* Flaw in theory: all fundamental objects want
to be massless like photons

 The Fix: add a ubiquitous Higgs field
— Mass of quarks, leptons, W and Z arise via a
dynamical interaction with the Higgs field
* One prediction of this theory:

— The Higgs field self-interacts giving rise to a new

particle,the nggS Boson



Lies in Newsprint

“... the Higgs field is responsible for all mass in the
universe...” NOT TRUE

~99% of (our) mass arises dynamically within the
proton, without the Higgs field

— Swarms of gluons around quarks
— Energy in gluon field = mass via E=mc?
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Mass From Massless Fields

* How can a massless field give a massive object?
e Consider a Laser beam sent into a mirrored box.

e Relativity: box is heavier with (massless) light trapped
inside, like a proton filled.with.gluons



To Summarize So Far

 |n ~1812, mass was real, fields were mathematical

* In 2012, all that is real (particles, light) is comprised
of quantized fields

 Mass is dynamically generated, not inherent

 Many mysteries swept into the ubiquitous Higgs
field

* |f this theory is correct’: One more
plece :

The Higgs Boson






The Large Hadron Collider (LHC)
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LHC Tunnel (26.7 km)




LHC Accelerator
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The LHC Design Paragittey
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— Maximum energy scales with radius and magnet eﬂ'lpolep‘
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First LHC Data

* We have collision data from September 2008

* Unfortunately they were magnet-magnet
collisions

* On to better times:
2011+2012, LHC performing flawlessly
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The ATLAS Detector

3-level trigger
reduces the rate
from 40 MHz to
~200 Hz

25m

« 3000 scientists
*1000 Students
175 Universities/labs
* 40 countries
Tans o 2 turtle doves

Semiconductor fr
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The CMS Detector

Compact Muon Solenoid:
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Detector Mass |

Perspective
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The Higgs Search



Experimental Constraints on the
nggs Mass circa 2011
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Higgs Rate from LHC

Unfortunately: Higgs boson production rate:
1 out of 1012 pp interactions

7 TeV data samples (2011)
4.8 fb! of data ~70,000 Higgs in ~10! interactions

Peak luminosity 3.6x10%cm=s! ~10 interactions per
beam crossing

8 TeV data samples (2012)

5.8 fb! of data ~120,000 Higgs in ~2x10!7 interactions

Peak luminosity 6.8x1033cms-! ~20 interactions per
beam crossing

* Also unfortunate: only capture ~).2% of Higgs (the
rest look too much like background)
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Challenges due to High collision Rate

*The physics we care about

H>ZZ>4pn

Background
from other pp
collisions!
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Control Samples for the Higgs

s/->e+e-, helps to understand two higgs decay modes.
"H->Z7* and H=>yy
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The Signal: H->yy

*m,, spectrum fit (in 10 categories of photon quality) for signal plus background model
=Selection optimized using Monte Carlo
=Systematic: Max deviation of background model from expected background distribution
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=» Excess of ~190 Events
=>» Expected 2.40

=» Observed 4.50
(LEE, 3.60)

=» Signal strength:
0/0g, = 1.9 £0.5
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H—> 4] mass spectrum after all selections: 2011+2012

Peak at m(4l) ~ 90 GeV from

single-resonant Z—=> 4l production
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Results from CMS on H->vyy

- CMS Preliminary
— Is=7TeV,L=5.11b"

- |s=8TeV,L=531b"

—e— S/B Weighted Data
S+B Fit

=>» Expected 2.5 0
=>» Observed 4.10 (LEE, 3.20)

=» Signal strength:
o0/0¢,, = 1.56 £0.43
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Consistency of Data with BG only Hypothesis

Q_o LI L DL DL DL L L
T ATLAS 2011 - 2012 Obs
S \s=7TeV: |Ldt=46-481b" e Exp. :
is=8TeV: |Ldt=5.85.9 fb +ic
L —peiet S ifaelelefer =" ~Coebeleleleteieeebeteiebeleieeebeiebeiebebebebebebefeefeieleeieieieieiebeiebetebetebefefeiefefeps — Oo
10 B T T T T T e o 1
102 Bniman I ] 20
107 e T S P DR LT ET PR R, 3G
10
10-5 ------------------------------------------------------------------ 40
10°
T = O o { 50
10° =
10 - N O 60
107°
10-1111|||||||||||1|||||||1|||||~|“1||||||||||
11 115 120 125 130 135 140 145 15
m, [GeV]

Observed significance 5.90 (expected 5.00)
prob. of BG only fluctuation:  1.7x107
Fitted mass: 126.0 = 0.4 (stat) £ 0.4 (syst) GeV



Is everything consistent?
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Are we finished?

s the Standard Model complete, is it the end?
~irst need to make sure 125 GeV object is the
Higgs

Measure its quantum numbers via angular
distribution of decay products




Problems in the Standard Model include:

NGC 5746

* Doesn’t address what is apparently 95% of the
Universe

* No dark matter candidate (DM)

* No dark energy (or gravity, for that matter)
e Hierarchy Problem

*EW radiative corrections to the M,

* integrated to scale A, shifts bare Mass by:

400GeV

om:, = (115GeV)?’[

*+*Need either:

- canceling counter terms (CT)
* some other New Physics by ~ 1-few TeV to
maintain fine tuning at O(103)
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Direct and Indirect Search for New
Physics

* Direct searches for event signatures common to
many BSM but rare in SM

— Mulitple Leptons, rare in SM, common in NP
— Excess missing energy as search for DM Candidate

* Indirect searches:

— Higgs decay signatures could give indirect evidence for
something heavy in virtual loops needed to explain
Higgs decays

— Motivates precision, high statistics study of this new
object R
OU00OINS o
t ________
ovooo L



What it all means (my opinion)
Science Lessons:

 We have a (relatively) ‘complete’ picture of mass:

* Mass is beautifully complicated and elegantly revealed in
Quantum Mechanics:
— In~1810, matter was real, fields were math
— Now everything is comprised of quantized fields
— Mass is dynamic in origin, not innate. It arises from fundamental
interactions and is calculable (at some level)
* Last puzzle piece, Higgs Boson; intellectual & experimental tour-
de-force



What it all means (my opinion)
d the Science:

. iggs discovery was global:
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